

CD3-FITC
Ref: CYT-3F8

 ϵ

For In Vitro Diagnostic use

INTENDED USE

CD3-FITC is a monoclonal antibody (MAb) labelled with fluorescein isothiocyanate (FITC) designed for use as a direct immunofluorescence reagent in the identification and enumeration of cells which express the CD3 antigen by flow cytometry.

SUMMARY AND EXPLANATION

Flow Cytometry is a powerful tool for the analytical and quantitative characterization of cells which provides rapid, quantitative and multiparametric analysis of heterogeneous cell populations on a cell-by-cell basis. Flow cytometry is performed on cells in liquid suspension that have been incubated with fluorescently-labeled antibodies directed against specific cellular proteins. The relative fluorescence intensity of the positive cells indicates the amount of antibody bound to specific binding sites on the cells, and therefore provides a relative measure of antigen expression.

Human lymphocytes may be classified in three main populations according to their biological function and their cell surface antigen expression: T lymphocytes, B lymphocytes and natural killer cells (NK). T lymphocytes (CD3+), the precursors of which originate in the bone marrow and then migrate and mature in the thymus, can be subdivided as well in functionally different populations. The most clearly defined of these are helper/inducer T cells (CD3+CD4+) and suppressor/cytotoxic T cells (CD3+CD8+). T cells produce no antibodies and are the mediators of cell immunity.

The CYT-3F8 MAb recognizes the CD3 antigen present in T cells, and can therefore be used in the characterization studies for immunophenotyping of lymphocytes. These studies are widely applied for monitoring of the immunologic status of post-transplant patients and in the characterization and follow-up of immunodeficiencies, autoimmune diseases, leukemia etc (1,2).

PRINCIPLES OF THE PROCEDURE

Flow cytometry (FC) is an innovative technology by means of which different cell characteristics are simultaneously analyzed on a single cell basis. This is achieved by means of hydrodynamic focusing of cells that pass aligned one by one in front of a set of light detectors; at the same time they are illuminated by a laser beam. The interaction of the cells with the laser beam generates signals of two different kinds: those generated by dispersed light (FSC/SSC), which mainly reflects the size of the cell and its internal complexity, and those related to the emission of light by the fluorochromes present in the cell. These signals become electric impulses which are amplified and registered as digital signals to be processed by a computer.

When the reagent is added to the sample, the fluorochrome-labelled MAb presents in the reagent bind specifically to the antigens they are directed against, allowing the detection by FC of the cell populations carried by the antigen.

The erythrocyte population, which could hinder the detection of the target population, is eliminated by the use of a red blood cell lysing solution previous to acquire the sample on the cytometer. The use of QuicklysisTM (CYT-QL-1) erythrocyte lysing solution is recommended, since it requires no further washing step and contains no fixative, therefore minimizing the handling of the sample and avoiding the cell loss associated to the centrifuge process.^(3,4)

The T lymphocyte (CD3+) count is generally expressed as a percentage of the total amount of lymphocytes or leucocytes present in the sample which can itself be determined by FC based on its typical pattern of FSC/SSC (size/granularity or complexity). Because each flow cytometer has different operating characteristics each laboratory must determine its optimal operating procedure.

REAGENT COMPOSITION

Purified monoclonal CD3 Antibody conjugated with fluorescein isothiocyanate (FITC), supplied in phosphate buffered saline with 0,1% sodium azide.

Clone: Cris-7 Isotype: IgG2a

Purification: Affinity chromatography

Amount per 1 ml vial: 200 tests (5 µl MAb to 106 cells)

Reagents are not considered sterile.

STORAGE CONDITIONS

The reagent is stable until the expiration date shown on the label, when stored at 2-8° C. The reagent should not be frozen or exposed to direct light during storage or during incubation with cells. Keep the reagent vial dry. Once opened, the vial must be stored in a vertical position to avoid any possible spillage.

WARNINGS AND RECOMMENDATIONS

- For in vitro diagnostic use.
- 2. This product is supplied ready to use. If it is altered by dilution or addition of other components, it will be invalidated for in vitro diagnostic use.
- 3. The reagent is stable until the expiration date shown on the label if it is properly stored. Do no use after the expiration date shown on the label. If the reagents are stored in conditions different from those recommended, such conditions must be validated by the user.
- 4. Alteration in the appearance of the reagent, such as the precipitation or discoloration indicates instability or deterioration. In such cases, the reagent should not be used.
- 5. It contains 0.1% sodium azide (CAS-Nr. 26628-22-8) as a preservative, but even so care should be taken to avoid microbial contamination of reagent or incorrect results may occur.
 - Sodium azide (NaN₃) is harmful if swallowed (R22), if swallowed, seek medical advice immediately and show this container or label (S46).
 - Wear suitable protecting clothing (S36).
 - Contact with acids liberates very toxic gas (R32).
 - Azide compounds should be flushed with large volumes of water during disposal to avoid deposits in metal drains where explosive conditions may develop.

- All patient specimens and materials with which they come into contact are considered biohazards and should be handled as if capable of transmitting infection (5), and disposed according to the legal precautions established for this type of product. Also recommended is handling of the product with appropriate protective gloves and clothing, and its use by personnel sufficiently qualified for the procedures described. Avoid contact of samples with skin and mucous membranes. After contact with skin, wash immediately with plenty of water.
- Use of the reagent with incubation times or temperatures different from those recommended may cause erroneous results. Any such changes must be validated by the user.

PROCEDURE

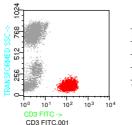
Material included

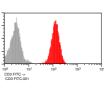
CD3-FITC sufficient for 200 determinations (5 µl MAb to 10⁶ cells).

Material required but not included

- 488 nm ion argon laser-equipped flow cytometer and appropriate computer hardware and software.
- Test tubes suitable for obtaining samples in the flow cytometer used. Usually tubes with a rounded bottom for 6 mL, 12x 75 mm
- Automatic pipette (100µL) and tips.
- Micropipette with tips.
- Chronometer
- Vortex Mixer
- Isotypic control reagent
- QuicklysisTM lysing solution
- Wash buffer as phosphate buffered saline (PBS) containing 0.1% sodium azide.

Whole blood sample must be taken aseptically by means of a venipuncture^(6,7) in a sterilized tube for blood collection containing an appropriate anticoagulant (use of EDTA is recommended). The analysis requires one hundred (100) µl of the whole blood sample per tube, assuming a normal range of approximately 4 to 10 x 103 leucocytes per µl. For samples with a high white blood cell count, dilute samples with PBS to obtain a concentration of cells approximately equal to 1 x 10⁴ cells/μL. Store the blood samples at 18-22°C until they are to be tested. It is advisable to test blood samples within the 24 hours after their extraction. Hemolyzed samples or samples with suspended cell aggregates should be rejected.


- 1. Mix 100µl of peripheral blood with 5µl of CD3-FITC. In the case of working with other body fluids with fewer cells, such as cephalorraquid fluid, bronchoalveolar lavage, gastric lavage, start with an initial volume of 200 µl. To evaluate the non-specific binding of the antibody, an appropriated isotype control tube can be prepared.
- Incubate for 10 minutes at room temperature in the dark.


 Add 2 ml of Quicklysis^{TM*} erythrocyte lysing solution and incubate the sample for 10 minutes at room temperature in the dark.
- Acquire directly on the flow cytometer within the first four hours of finishing the sample preparation. If the samples are not acquired immediately after preparation, they should be stored at 2-8°C in the dark. Calibration of the instrument must be done according to the manufacturer's advice. Before acquiring samples, adjust the threshold or discriminator to minimize debris and ensure populations of interest are included. Before acquiring the sample on the flow cytometer, mix the cells on the vortex at low speed to reduce aggregation.
- *Note: The use of other lysing solutions may require the elimination of the lysed red blood cells. Follow the manufacturer's recommended protocol of the lysing solution used.

Flow cytometry analysis

Check that the cytometer is correctly aligned and standardized for light dispersion (FSC/SSC on linear scale) and fluorescent intensity (FL1, FL2, FL3 FL4 on logarithmic scale) and that the right color compensation has been set following the instructions of the cytometer manufacturer

Visually inspect the CD3 vs SSC dot plot: the T lymphocyte population (CD3+) should appear as a compact CD3+ cluster with low SSC. Do not proceed with analysis if the T-lymphocyte population is diffuse and if there is little or not separation between it and other clusters. The following figure shows representative flow cytometry data on peripheral blood (healthy individual) stained with the antibody. Stained cells (CD3+ shown on red color) and unstained populations (CD3- shown on grey color) are clearly identifiable.

The results are commonly reported as a percentage of the total of lymphocyte or leucocytes count present in the sample.

LIMITATIONS

- Blood samples should be stored at 18-22°C and be tested within the 24 hours after they are obtained.
- It is advisable to acquire stained samples on the cytometer as soon as possible to optimize the results. Nonviable cells may stain nonspecifically. Prolonged exposure of whole blood samples to lytic reagents may cause white cell destruction and loss of cells from the target population.
- When using whole blood procedures, all red blood cells may not lyse under following conditions: nucleated red blood cells, abnormal protein concentration or hemoglobinopathies. This may cause falsely decreased results due to unlysed red blood cells being counted as leukocytes.
- Results obtained by flow cytometry may be erroneous if the cytometer laser is misaligned or the gates are improperly set

- Each laboratory should establish a normal range for T-lymphocytes using its own test conditions. The data for the reagent's performance have been obtained from whole blood samples collected with EDTA as anticoagulant. The reagent's performance may be affected by the use of other anticoagulants.
- Certain patients may present special problems due to altered or very low number of certain cellular population.
- Cells separated from whole blood by means of density gradients may not have the same relative concentrations of cells as unseparated blood. This may be relatively insignificant for samples from individuals with normal white blood cell counts. In leukopenic patients, the selective loss of specific subsets may affect the accuracy of the determination.
- It is important to understand the normal pattern of expression of this antigen and its relation to the expression of other relevant antigens to carry out an adequate analysis. (8-10)
- Abnormal states of health are not always represented by abnormal percentages of certain leukocyte populations. An individual
 who may be in an abnormal state of health may show the same leukocyte percentages as a healthy person. For this reason, it is
 advisable to use the test results in combination with other clinical and diagnosis data.

EXPECTED VALUES

Each laboratory should establish its own normal reference ranges for T lymphocyte (CD3+) counts, since such values may be influenced by age, sex and race (11,12). Based on the consulted bibliography and with a merely informative character, the percentage of CD3+ cells regarding the total of lymphocytes obtained by CF in healthy individuals is around 55-82% for children of 0-3 years of age (13) and 61-85% for adults between the ages of 18 and 70 (11).

QUALITY CONTROL

- To obtain optimum results it is advisable to verify the precision of pipettes and that the cytometer is correctly calibrated.
- The fluorochromes fluorescein isothiocyanate (FITC), R-phycoerythrin (PE), R-phycoerythrin-cyanine 5 (PECy5), allophycocyanin (APC) emit in different wavelengths but show a certain spectral overlapping which must be corrected by means of electronic compensation if combinations of different monoclonal antibodies are used conjugated with these fluorochromes. The optimum levels of compensation can be established by analysis in a dot-plot diagram of cells from healthy individuals stained with mutually exclusive monoclonal antibodies conjugated with the fluorochromes to be used in the test.
- To evaluate the non-specific binding of the antibody, an appropriated isotype control tube can be prepared.

PERFORMANCE CHARACTERISTICS

Reproducibility:

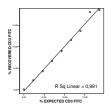
10 repeated measures from three peripheral blood samples representing high, medium and low leucocyte counts were evaluated. In the following table are shown the mean % of CD3+ cells of the total leucocyte count, the standard deviation and the coefficient of variation obtained for each of the three levels studied:

TOTAL LEUCOCYTES LEVEL	NUMBER OF REPEATED MEASURES	MEAN % OF CD3+ LYMPHOCYTES	STANDARD DEVIATION (SD)	COEFFICIENT OF VARIATION (%CV)
High	10	44.32	0.31	0.70
Medium	10	29.37	0.23	0.78
Low	10	12.16	0.19	1.56

Specificity:

The CD3 antigen is found on the cell surface of mature thymocytes and T lymphocytes in peripheral blood. To evaluate the reagent's cross-reactivity with other cell populations, a study was carried out on 10 blood samples from healthy donors, stained with an adequate isotype control and the MAb to study. The percentage of platelets, erythrocytes, lymphocytes, monocytes and granulocytes stained with the mentioned MAb was evaluated. The results obtained are shown in the following table:

	PLATELETS	RED BLOOD CELLS	LYMPHOCYTES	MONOCYTES	GRANULOCYTES
% Obtained	0.32	0.08	68.35	1.63	0.07
Range	(0 - 1.20)	(0.02 - 0.14)	(55.81 - 81.98)	(0.76 - 3.40)	(0.02 - 0.13)


Accuracy

The results for 10 different samples stained with 2 different lots of the same reagent were compared. Each pair of data for the same sample was analyzed, obtaining the mean fluorescence intensity (MFI) and the standard deviation from which a grouped % CV was calculated. The results of the analysis are shown in the following chart:

MEAN MFI	SD	GROUPED %CV
126.32	7.68	6.08%

Linearity

Dilutions of a peripheral blood sample were made to check the concentration scale of stained cells obtained. The results show an excellent correlation level between the results obtained and expected based on the dilution used.

Y = -0.4 + 1.05 X

REFERENCES

- Orfao A. González de Buitrago JM La citometría de flujo en el laboratorio clínico. Sociedad española de bioquímica clínica y patología Molecular 1995.
- 2. Stetler-Stevenson M. Flow cytometry analysis of lymphomas and lymphoproliferative disorders. Semin Hematol 2001 Apr;38(2):111-23.
- Menéndez P, et al. Comparison between a lyse-and-then-wash method and a lyse-non-wash technique for the enumeration of 3. CD34+ hematopoietic progenitor cells. Cytometry (Comm. Clin. Cytometry) 34: 264-271 (1998)
- GratamaJW, Menéndez P, Kraan J, Orfao A. Loss of CD34+ hematopoietic progenitor cells due to washing can be reduced by the 4. use of fixative-free erytrocyte lysing reagents. J Immunol. Methods 239: 13-23 (2000)
- Protection of Laboratory Workers from occupationally acquired infections. Second edition; approved guideline (2001). Villanova 5. PA: National Committee for Clinical Laboratory Standards; Document M29-A2.
- Procedures for the collection of diagnostic blood specimens by venipuncture- approved standard; Fifth edition (2003). Wayne PA: National Committee for Clinical Laboratory Standards; Document H3-A5.

 Clinical applications of flow cytometry: Quality assurance and immunophenotyping of lymphocytes; approved guideline (1998).
- 7 Wayne PA: National Committee for Clinical Laboratory Standards; Document H42-A.
- Lima M et al. $TCR\alpha\beta^+/CD4^+$ Large Granular Lymphocytosis. A new Clonal T-Cell Lymphoprolipherative Disorder. American Journal of Pathology, 163 (2):763-771 (2003)
- Lima M. et al. Utility of flow cytometry immunophenotyping and DNA ploidy studies for diagnosis and characterization of blood 9. involvement in CD4+ Sézary's syndrome. Haematologyca 88(8): 874-887(2003).
- 10. Gorczyza W. et al. An approach to diagnosis of T-cell lymphoprolipherative disorders by flow cytometry. Cytometry (Clinical cytometry) 50:177-190 (2002)
- 11. Reichert et al. Lymphocyte subset reference ranges in adult Caucasians. Clin Immunol Immunopathol 60:190-208 (1991)
- Prince HK et al. Influence of racial background on the distribution of T-cell subsets and Leu-11 positive lymphocytes in healthy blood donors. Diagn Immunol. 3: 33-39 (1985)
- 13. Kotylo PK et al. Reference ranges for lymphocyte subsets in pediatric patients. Am J Clin Pathol 100:111-5 (1993)

WARRANTY

This product is warranted only to conform to the quantity and contents stated on the label. There are no warranties that extend beyond the description on the label of the product. Cytognos's sole liability is limited to either replacement of the product or refund of the purchase price.

EXPLANATION OF SYMBOLS

	Use by (YYYY-MM)		
1	Storage temperature limitation		
Ţ <u>i</u>	Consult instructions for use		
IVD	In vitro diagnostic medical device		
LOT	Batch code		
REF	Catalogue number		
	Manufacter		

PRODUCED BY CYTOGNOS SL

Polígono La Serna, Nave 9 37900 Santa Marta de Tormes Salamanca (España) Phone: + 34-923-125067 Fax: + 34-923-125128

Ordering information: admin@cytognos.com Technical information: support@cytognos.com

www.cytognos.com

102228ENG Last revision: ORAN 26/07/2010